On Characterizations of Isometries on Function Spaces

نویسندگان

  • Song-Ying Li
  • Yingbin Ruan
چکیده

Let X be a Banach space over C. Let T : X → X be an isometric isomorphism (an onto linear operator on X with |Tx| = |x| for all x ∈ X). When X is a Hilbert space, any perturbations of orthonormal basis of X give an isometric isomorphism on X. But, for non-Hilbertian space, one expects that an isometric isomorphism should be something special, and would like to find a characterization for T on some Banach spaces X like L space, Hardy space H when p 6= 2, etc.. Questions along this line have attracted a lot attention. For D being a bounded domain in C, we let H(D) be the holomorphic Hardy space over D, and let A(D) be the Bergman space over D. For any holomorphic map φ : D → D, we let Cφ be the composition operator associated to φ acting on function spaces over D, namely, Cφ(u) = u ◦φ for any function u on D. For 1 ≤ p ≤ ∞ and p 6= 2, we let T : H(D) → H(D) be an isometric isomorphism. It has been proved by several authors for certain class of domains D that

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surjective Real-Linear Uniform Isometries Between Complex Function Algebras

In this paper, we first give a description of a surjective unit-preserving real-linear uniform isometry $ T : A longrightarrow B$,  where $ A $ and $ B $ are complex function spaces on compact Hausdorff spaces $ X $ and $ Y $, respectively, whenever ${rm ER}left (A, Xright ) = {rm Ch}left (A, Xright )$ and ${rm ER}left (B, Yright ) = {rm Ch}left (B, Yright )$. Next, we give a description of $ T...

متن کامل

Metric Characterizations of Isometries and of Unital Operator Spaces and Systems

We give some new characterizations, of unitaries, isometries, unital operator spaces, unital function spaces, operator systems, C-algebras, and related objects. Several characterizations of these objects are already known; see e.g. [15, Theorem 9.5.16], [1], the discussion on p. 316 of [4], [14], and [13]. One difference between our paper and these cited references, is that our results only use...

متن کامل

Some Characterizations of Hopf Group on Fuzzy Topological Spaces

In this paper, some fundamental concepts are given relating to fuzzytopological spaces. Then it is shown that there is a contravariant functorfrom the category of the pointed fuzzy topological spaces to the category ofgroups and homomorphisms. Also the fuzzy topological spaces which are Hopfspaces are investigated and it is shown that a pointed fuzzy toplogicalspace having the same homotopy typ...

متن کامل

Rough Isometries of Lipschitz Function Spaces

We show that rough isometries between metric spacesX,Y can be lifted to the spaces of real valued 1-Lipschitz functions over X and Y with supremum metric and apply this to their scaling limits. For the inverse, we show how rough isometries between X and Y can be reconstructed from structurally enriched rough isometries between their Lipschitz function spaces.

متن کامل

On exponentiable soft topological spaces

An object $X$ of a category $mathbf{C}$ with finite limits is called exponentiable if the functor $-times X:mathbf{C}rightarrow mathbf{C}$ has a right adjoint. There are many characterizations of the exponentiable  spaces in the category $mathbf{Top}$ of topological spaces. Here, we study the exponentiable objects in the category $mathbf{STop}$ of soft topological spaces which is a generalizati...

متن کامل

On characterizations of hyperbolic harmonic Bloch and Besov spaces

‎We define hyperbolic harmonic $omega$-$alpha$-Bloch space‎ ‎$mathcal{B}_omega^alpha$ in the unit ball $mathbb{B}$ of ${mathbb R}^n$ and‎ ‎characterize it in terms of‎ ‎$$frac{omegabig((1-|x|^2)^{beta}(1-|y|^2)^{alpha-beta}big)|f(x)-f(y)|}{[x,y]^gamma|x-y|^{1-gamma}‎},$$ where $0leq gammaleq 1$‎. ‎Similar results are extended to‎ ‎little $omega$-$alpha$-Bloch and Besov spaces‎. ‎These obtained‎...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007